Ausgerichtet

So funk-tionieren Antennen

Praxis & Tipps | Praxis

Seite 2: Ausgerichtet

Das Richtdiagramm gibt für die horizontale und vertikale Ebene an, wie gut eine Antenne in jede Raumrichtung sendet und empfängt: Je schmaler die Keule, desto höher der Gewinn in Vorzugsrichtung.

Messungen an Antennen sind im Nahfeld sehr schwierig, weil sich die Felder hier noch nicht sphärisch ausgebildet haben und Beugungs- und Streuungseffekte hereinspielen. Als Daumenregel geht man davon aus, dass das Fernfeld bei Entfernungen größer als der vierfachen Wellenlänge beginnt, bei WLAN also ab etwa einem halben Meter. Dort lassen sich Hochfrequenz-Antennen (HF-Antennen) dann sehr einfach mit einem Richtdiagramm beschreiben: Man denkt sich eine Kugel um die Antenne und misst, wie stark das Signal in welche Richtung abgestrahlt wird. Dabei gibt es das Idealbild des isotropen Strahlers, der in alle Richtungen gleichstark sendet.

Umgekehrt ist eine Antenne denkbar, die eine ganz bestimmte Richtung bevorzugt und ihr Signal nur in einen Kegel mit wenigen Grad Öffnungswinkel leitet. Weil diese Antenne dazu die gesamte Sendeleistung verwenden kann, die ursprünglich für die komplette Kugel gedacht war, erhält ein in Vorzugsrichtung liegender Empfänger ein viel stärkeres Signal. Deshalb spricht man von einem Antennengewinn. Allerdings wird bei Richtantennen der Rest der Welt wesentlich schlechter bedient. Eine Antenne, die ohne zusätzlichen Verstärker sowohl einen sehr hohen Gewinn als auch eine möglichst gute Rundumabstrahlung leisten soll, kann es entgegen mancher Marketingaussage nicht geben.

Den Antennengewinn geben die Hersteller üblicherweise in dBi an, Dezibel (zehntel Bel) bezogen auf den isotropen Strahler. Das Bel – benannt nach Alexander Graham Bell – ist der Logarithmus zur Basis 10 der bezogenen Einheit. 10 Milliwatt gegenüber einem Milliwatt entspricht 1 Bel oder 10 dB, 100 mW zu 1 mW entsprechen 20 dB. Demnach würde ein Gewinn von 30 dBi bedeuten, dass solch eine Antenne in ihre Hauptrichtung das Tausendfache dessen abstrahlt, was der isotrope Strahler dorthin senden würde. Sind Vorzeichen angegeben, dann kennzeichnen positive dB-Angaben stets eine Verstärkung (Ausgangsleistung größer als Eingangsleistung), negative dagegen eine Dämpfung (Ausgangsleistung kleiner als Eingangsleistung).

Wenn man sich die Kugel um die Antenne vorstellt, dann lässt sich leicht berechnen, wie viel Leistung tatsächlich beim Empfänger ankommt: Die Kugeloberfläche wächst mit dem Quadrat des Radius, und die Ausbreitung der Wellen ist im Fernfeld unabhängig von der Antenne. Damit verteilt sich die Leistung in einem immer größeren Abstand auf eine quadratisch wachsende Kugeloberfläche: Verdoppelt man die Distanz, kommt beim Empfänger nur noch ein Viertel des Signals an. Deshalb bewirkt eine verdoppelte Sendeleistung (+3 dB) keineswegs doppelte Reichweite, man bräuchte mindestens eine Vervierfachung (+6 dB).

Weiter als bis zum sichtbaren Horizont kommt man bei WLAN-Frequenzen aber generell nicht, da sich die Wellen bei 2,4 GHz quasioptisch ausbreiten. Kurzwelle (3 bis 30 MHz) reicht über den Horizont hinaus, da je nach Frequenz verschiedene Atmosphärenschichten als Reflektor wirken und das Signal um die Erdkrümmung lenken.

Antennen verhalten sich zudem reziprok: Eine Antenne, die beim Senden die Abstrahlung in eine bestimmte Richtung bündelt, wird auch beim Empfangen aus dieser Richtung besonders gut funktionieren. Am Antennenfuß steht ein um den Gewinn stärkeres Signal bereit, ohne dass ein elektronischer Verstärker sein unvermeidliches Rauschen dazu gibt. Daraus resultiert ein bei Funkamateuren gängiger Spruch: Eine gute Antenne ist der beste Verstärker.

Richtantennen leuchten einen Kegel aus. Verdoppelt man die Entfernung zum Sender, dann vervierfacht sich die bestrahlte Fläche.

Für WLAN ist die zulässige Sendeleistung hierzulande gesetzlich beschränkt. Sie liegt im 2,4-GHz-Band bei 100 mW EIRP (20 dBm). EIRP (Effective Isotropic Radiated Power) ist die Sendeleistung, mit der man eine in alle Raumrichtungen gleichmäßig (isotrop) abstrahlende Antenne versorgen müsste, damit die Anlage im Fernfeld dieselbe Feldstärke erreicht wie mit einer bündelnden Richtantenne. dBm steht für Dezibel bezogen auf ein Milliwatt. Alles, was über 20 dBm EIRP hinausgeht, ist illegal und kann als Ordnungswidrigkeit geahndet werden. Bei 5,7 GHz sind unter bestimmten Voraussetzungen bis zu 1 Watt erlaubt.

Das bedeutet für WLAN-Richtfunker, dass der Betrieb von Antennen mit hohem Gewinn unter Umständen illegal ist: Eine typische WLAN-Karte sendet mit +15 dBm (30 Milliwatt). Wenn die Antenne nun +8 dBi bringt, dann hätte die Anlage ohne die Dämpfung des Antennenkabels eine Sendeleistung von +23 dBm (200 Milliwatt) am isotropen Strahler, 3 dB über dem Grenzwert. Man muss also ein Kabel mit mindestens 3 dB Verlust – zur Kabeldämpfung folgt weiter unten mehr – einsetzen, um legal zu bleiben. Alternativ bieten auch manche Access Points Optionen, um die Sendeleistung stufenweise anzupassen. Beispielsweise hat der verbreitete DWL-900+ von D-Link vier Stufen: 100 % (19 dBm), 50 % (16 dBm), 25 % (13 dBm) und 12,5 % (10 dBm).

Anzeige
Anzeige