zurück zum Artikel

Google stellt Bibliothek für Differential Privacy zur Verfügung

Google stellt Bibliothek für Differential Privacy zur Verfügung

(Bild: Tatiana Shepeleva/Shutterstock.com)

Die C++-Bibliothek konzentriert sich auf Funktionen, die anscheinend für gewöhnlich nur schwer von Grund auf neu zu erstellen sind.

Google hat eine C++-Bibliothek für den Umgang mit Differential Privacy (differentieller Privatsphäre) als Open Source zur Verfügung gestellt. Diese kommt wohl in etlichen Kernprodukten des Internetkonzerns wie Chrome, Maps und Fi zum Einsatz. Entwickler können sie nutzen und in eigenen Tools für den Umgang mit aggregierten Daten verwenden, ohne persönlich identifizierbare Informationen innerhalb oder außerhalb ihres Unternehmens preiszugeben.

Das Ziel von Differential Privacy ist es, präzise Modelle zu trainieren, die aber keine Rückschlüsse auf die verwendeten Daten zulassen. Differential Privacy ist keine Erfindung von Machine-Learning-Experten, sondern kommt in unterschiedlichen Feldern der Datenverarbeitung und Statistik bereits seit Längerem zum Tragen.

Für den Start hat man sich anscheinend auf Funktionen konzentriert, die besonders schwierig von Grund auf auszuführen sind. Die Ingenieure hinter der Bibliothek listen hier auf:

Die Bibliothek ist nicht die erste Initiative seitens Google zum Thema Privatsphäre in diesem Jahr: So sind mit Tensorflow Privacy, eine Python-Bibliothek, die Optimierer zum Trainieren von ML-Modellen mit Differential Privacy enthält, und Tensorflow Federated, mit dem mobile Endgeräte ein gemeinsames Prediction Model erstellen können, ohne die Daten miteinander zu teilen, im Frühjahr erschienen [1]. Und Private Join and Compute, seit Juni Open Source, ist eine neue Art von MPC (Secure Multi-Party Computing), die das PSI-Protokoll erweitert, damit Unternehmen mit vertraulichen Datensätzen zusammenarbeiten und gleichzeitig die Messlatte für den Datenschutz höher legen können.

Die Differential Privacy Library wird auf GitHub unter der Apache License gehostet [2].
(ane [3])


URL dieses Artikels:
http://www.heise.de/-4514769

Links in diesem Artikel:
[1] https://www.heise.de/meldung/Kuenstliche-Intelligenz-Rundumschlag-zu-TensorFlow-4328044.html
[2] https://github.com/google/differential-privacy/
[3] mailto:ane@heise.de