Praxistest: Erste ML-Experimente mit Google Coral und TensorFlow Lite

Mit dem Google Coral USB-Stick und seiner Edge TPU lassen sich auf PC, Raspi & Co ML-Projekte massiv beschleunigen – ein Einstieg mit Praxisprojekt.

Lesezeit: 16 Min.
In Pocket speichern
vorlesen Druckansicht Kommentare lesen 1 Beitrag

Der Raspberry Pi und Googles Coral USB-Stick mit der EdgeTPU sind ein prima Gespann, um Maker-Projekte und flinkes Machine Learning zu verbinden.

(Bild: Michael Plura)

Von
  • Michael Plura
Inhaltsverzeichnis

Einige Raspberry-Pi-Projekte benutzen Machine Learning, um Objekte, Sprache oder Gesten zu erkennen oder Daten mithilfe neuronaler Netze zu verarbeiten. Will man "KI-Anwendungen" in Form von Deep- oder Machine-Learning (DL, ML) im IoT-Bereich beispielsweise auf einem alten Laptop, einem Raspberry Pi oder anderen "Single Board-Computern" (SBC) laufen lassen, stößt man aber schnell an die Grenzen der Rechenleistung. Eine Gesichts- oder Objekterkennung über eine Kamera läuft beispielsweiseauf dem Raspi gerade so im Zeitlupentempo. Für Experimente in diesem Bereich und ein "Proof-of-Concept" mag das reichen, für den Praxiseinsatz allerdings nicht.

Mehr zum Thema Machine Learning

Es gibt aber Abhilfe: Raspi, PC & Co. lassen sich mit Spezialchips für ML-Anwendungen erweitern. Der im Folgenden verwendete Google Coral USB3-Stick (ab 79,99 €) beschleunigt die Objekterkennung auf einem Raspberry Pi mit Kamera von schlaffen 3 - 5 auf über 30 Bilder pro Sekunde. In diesem Artikel werfen wir einen Blick auf das technische Innenleben des Sticks und ermitteln anhand eines Beispielprojekts exemplarisch, was der Stick leisten kann.

Doch Hardware allein reicht nicht, es braucht auch die passende Software. Die Liste für ML-Anwendungen ist lang, in der Regel setzt man hier beispielsweise auf PyTorch, Scikit und vor allem TensorFlow. Letzteres nutzen wir in der Lite-Version für diesen Artikel. Bei TensorFlow handelt es sich um ein von Google entwickeltes Framework zur datenstromorientierten Programmierung. Den Begriff "Tensor" könnte man als Verallgemeinerung von Skalar, Vektor und Matrix betrachten. Google benutzt TensorFlow bei der Spracherkennung, GMail, Google Translate, Google Fotos, Google Maps und natürlich der Google Suche. TensorFlow ist in Python und C++ geschrieben und unterstützt neben diesen beiden Programmiersprachen auch Go, Java/JavaScript, Haskel, Rust und einige mehr.

Immer mehr Wissen. Das digitale Abo für IT und Technik.

  • Zugriff auf alle Inhalte von heise+
  • exklusive Tests, Ratgeber & Hintergründe: unabhängig, kritisch fundiert
  • c't, iX, MIT Technology Review, Mac & i, Make, c't Fotografie direkt im Browser lesen
  • einmal anmelden – auf allen Geräten lesen - monatlich kündbar
  • erster Monat gratis, danach monatlich ab 9,95 €
  • Wöchentlicher Newsletter mit persönlichen Leseempfehlungen des Chefredakteurs
GRATIS-Monat beginnen Jetzt GRATIS-Monat beginnen Mehr Informationen zu heise+